- porosityThe porosity of the porous medium.
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The porosity of the porous medium.
BVConstantPorosity
The BVConstantPorosity has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
Computes a constant porosity value for the porous medium.
Overview
Example Input File Syntax
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Unit:(no unit assumed)
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Unit:(no unit assumed)
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Unit:(no unit assumed)
Options:NONE, ELEMENT, SUBDOMAIN
Controllable:No
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Unit:(no unit assumed)
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
Input Files
- (examples/poroelasticity/cryer/cryer_fv.i)
- (test/tests/poroelasticity/mandel.i)
- (test/tests/fluid_flow/fv_multi_phase_buckley_leverett.i)
- (examples/solute/advection-diffusion/advection-diffusion.i)
- (test/tests/fluid_flow/fv_single_phase_1D_transient.i)
- (examples/poroelasticity/terzaghi/terzaghi.i)
- (examples/poroelasticity/mandel/mandel_fv.i)
- (test/tests/poroelasticity/terzaghi.i)
- (examples/poroelasticity/terzaghi/terzaghi_fv.i)
- (examples/multiphase/buckley-leverett/buckley-leverett.i)
- (examples/poroelasticity/mandel/mandel.i)
- (test/tests/fluid_flow/single_phase_1D_transient.i)
- (examples/multiphase/Mose/Mose.i)
- (examples/poroelasticity/cryer/cryer.i)
(examples/poroelasticity/cryer/cryer_fv.i)
# Cryer's problem
#
# See Arnold Verruijt "Theory and Problems of Poroelasticity" 2015
# Section 3.3 Cryer's problem
#
# Time dimension is t = Cv * t / a^2
# Space dimension is x = x / a
[Mesh]
type = FileMesh
file = 'mesh.msh'
[]
[Variables]
[pf]
type = MooseVariableFVReal
[]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[disp_z]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[stress_x]
type = BVStressDivergence
component = x
variable = disp_x
fluid_pressure = pf
[]
[stress_y]
type = BVStressDivergence
component = y
variable = disp_y
fluid_pressure = pf
[]
[stress_z]
type = BVStressDivergence
component = z
variable = disp_z
fluid_pressure = pf
[]
[]
[FVKernels]
[fluid_time_derivative]
type = BVFVSinglePhaseTimeDerivative
variable = pf
[]
[darcy]
type = BVFVSinglePhaseDarcy
variable = pf
[]
[]
[BCs]
[confine_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[]
[confine_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'back'
[]
[confine_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'bottom'
[]
[BVPressure]
[out_pressure]
boundary = 'out'
displacement_vars = 'disp_x disp_y disp_z'
value = 1.0
[]
[]
[]
[FVBCs]
[out_drained]
type = FVDirichletBC
variable = pf
value = 0
boundary = 'out'
[]
[]
[Materials]
[mechanical]
type = BVMechanicalMaterial
displacements = 'disp_x disp_y disp_z'
bulk_modulus = 1
poisson_ratio = 0.25
[]
[fluid_flow_mat]
type = BVSinglePhaseFlowMaterial
[]
[single_phase_poromech]
type = BVPoroMechanicsMaterial
biot_coefficient = 0.6
[]
[permeability]
type = BVConstantPermeability
permeability = 1.5 # scaled by effective space
[]
[porosity]
type = BVConstantPorosity
porosity = 0.1
[]
[fluid]
type = BVFluidProperties
fluid_pressure = pf
temperature = 273
fp = simple_fluid
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 3.636363636363636 # scaled by effective time
bulk_modulus = 8.0
[]
[]
[Preconditioning]
[asm]
type = SMP
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_type
-pc_type
-sub_pc_type
-snes_type -snes_atol -snes_rtol -snes_max_it -snes_linesearch_type
-ksp_gmres_restart'
petsc_options_value = 'fgmres
asm
ilu
newtonls 1e-08 1e-10 200 basic
201'
[]
[]
[Postprocessors]
[Pc]
type = PointValue
outputs = 'csv_t'
point = '0.0 0.0 0.0'
variable = pf
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
automatic_scaling = true
start_time = 0
end_time = 10
[TimeStepper]
type = LogConstantDT
first_dt = 0.0001
log_dt = 0.022
[]
[]
[Outputs]
perf_graph = true
execute_on = 'TIMESTEP_END'
print_linear_residuals = false
exodus = true
[csv_t]
type = CSV
[]
[]
(test/tests/poroelasticity/mandel.i)
# Mandel's problem
#
# See Arnold Verruijt "Theory and Problems of Poroelasticity" 2015
# Section 3.2 Mandel's problem
# Cheng and Detournay (1988), A direct boundary element method for plane strain poroelasticity
#
# Time dimension is t = Cv * t / a^2
# Space dimension is x = x / a
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[Variables]
[pf]
order = FIRST
family = LAGRANGE
[]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[fluid_time_derivative]
type = BVSinglePhaseTimeDerivative
variable = pf
[]
[darcy]
type = BVSinglePhaseDarcy
variable = pf
[]
[stress_x]
type = BVStressDivergence
component = x
variable = disp_x
fluid_pressure = pf
[]
[stress_y]
type = BVStressDivergence
component = y
variable = disp_y
fluid_pressure = pf
[]
[]
[BCs]
[confine_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[]
[base_fixed]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[]
[top_load]
type = NeumannBC
variable = disp_y
value = -1
boundary = 'top'
[]
[sides_drained]
type = DirichletBC
variable = pf
value = 0
boundary = 'right'
[]
[]
[Materials]
[mechanical]
type = BVMechanicalMaterial
displacements = 'disp_x disp_y'
bulk_modulus = 1
poisson_ratio = 0.25
[]
[fluid_flow_mat]
type = BVSinglePhaseFlowMaterial
[]
[single_phase_poromech]
type = BVPoroMechanicsMaterial
biot_coefficient = 0.6
[]
[permeability]
type = BVConstantPermeability
permeability = 1.5 # scaled by effective space
[]
[porosity]
type = BVConstantPorosity
porosity = 0.1
[]
[fluid]
type = BVFluidProperties
fluid_pressure = pf
temperature = 273
fp = simple_fluid
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 3.636363636363636 # scaled by effective time
bulk_modulus = 8.0
[]
[]
[Preconditioning]
[asm]
type = SMP
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_type -ksp_rtol -ksp_max_it
-pc_type
-sub_pc_type
-snes_type -snes_atol -snes_rtol -snes_max_it -snes_linesearch_type
-ksp_gmres_restart'
petsc_options_value = 'fgmres 1e-10 100
asm
ilu
newtonls 1e-12 1e-08 100 basic
201'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
automatic_scaling = true
start_time = 0
end_time = 0.01
[TimeStepper]
type = LogConstantDT
first_dt = 0.001
log_dt = 0.044
[]
[]
[Outputs]
perf_graph = true
execute_on = 'TIMESTEP_END'
print_linear_residuals = false
exodus = true
[]
(test/tests/fluid_flow/fv_multi_phase_buckley_leverett.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0
xmax = 1
nx = 10
ymin = -0.01
ymax = 0.01
zmin = -0.01
zmax = 0.01
ny = 1
nz = 1
[]
[Variables]
[p]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[sw]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = 0.05
[]
[sn]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = 0.95
[]
[]
[FVKernels]
# Total pressure
[darcy_p]
type = BVFVMultiPhasePressureDarcy
variable = p
[]
# Wetting phase
[time_w]
type = BVFVMultiPhaseSaturationTimeDerivative
variable = sw
phase = 'wetting'
[]
[darcy_w]
type = BVFVMultiPhaseSaturationDarcy
variable = sw
total_pressure = p
phase = 'wetting'
[]
# Non-wetting phase
[time_nw]
type = BVFVMultiPhaseSaturationTimeDerivative
variable = sn
phase = 'non_wetting'
[]
[darcy_nw]
type = BVFVMultiPhaseSaturationDarcy
variable = sn
total_pressure = p
phase = 'non_wetting'
[]
[]
[FVBCs]
[leftinflux_pw]
type = FVDirichletBC
variable = p
value = 1.0
boundary = 'left'
[]
[right_pw]
type = FVDirichletBC
variable = p
value = 0.0
boundary = 'right'
[]
[leftinflux_sw]
type = FVDirichletBC
variable = sw
value = 0.95
boundary = 'left'
[]
[right_sw]
type = FVDirichletBC
variable = sw
value = 0.05
boundary = 'right'
[]
[leftinflux_sn]
type = FVDirichletBC
variable = sn
value = 0.05
boundary = 'left'
[]
[right_sn]
type = FVDirichletBC
variable = sn
value = 0.95
boundary = 'right'
[]
[]
[Materials]
[fluid_flow_mat]
type = BVMultiPhaseFlowMaterial
output_properties = 'fluid_mobility_w fluid_mobility_n'
outputs = exodus
[]
[porosity]
type = BVConstantPorosity
porosity = 1.0
[]
[permeability]
type = BVConstantPermeability
permeability = 1.0
[]
[fluid_properties_w]
type = BVFluidProperties
fluid_pressure = p
temperature = 273
fp = simple_fluid_w
phase = 'wetting'
[]
[fluid_properties_nw]
type = BVFluidProperties
fluid_pressure = p
temperature = 273
fp = simple_fluid_nw
phase = 'non_wetting'
[]
[capillary_pressure]
type = BVCapillaryPressurePowerLaw
saturation_w = sw
exponent = 2
reference_capillary_pressure = 1.0e-04
output_properties = 'capillary_pressure'
outputs = exodus
[]
[rel_perm]
type = BVRelativePermeabilityPowerLaw
saturation_w = sw
exponent = 2
output_properties = 'relative_permeability_w relative_permeability_n'
outputs = exodus
[]
[]
[FluidProperties]
[simple_fluid_w]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 1.0
[]
[simple_fluid_nw]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 1.0
[]
[]
[Preconditioning]
[hypre]
type = SMP
full = true
petsc_options = '-snes_ksp_ew -snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_hypre_type
-snes_atol -snes_max_it -snes_linesearch_type'
petsc_options_value = 'hypre boomeramg
1.0e-10 1000 basic'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
start_time = 0
end_time = 0.3
num_steps = 3
timestep_tolerance = 1.0e-05
automatic_scaling = true
residual_and_jacobian_together = true
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
execute_on = 'INITIAL TIMESTEP_END'
exodus = true
[]
(examples/solute/advection-diffusion/advection-diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 400
xmin = 0
xmax = 1
[]
[Variables]
[pf]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[c]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[ICs]
[pf_ic]
type = FunctionIC
variable = pf
function = '1-x'
[]
[]
[FVKernels]
# [time_derivative_p]
# type = BVFVSinglePhaseTimeDerivative
# variable = pf
# []
[darcy_p]
type = BVFVSinglePhaseDarcy
variable = pf
[]
[time_derivative_c]
type = BVFVSinglePhaseSoluteTimeDerivative
variable = c
[]
[darcy_c]
type = BVFVSinglePhaseSoluteDarcy
variable = c
fluid_pressure = pf
[]
[]
[AuxVariables]
[u]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[u_aux]
type = BVDarcyVelocityAux
variable = u
fluid_pressure = pf
component = x
execute_on = 'TIMESTEP_END'
[]
[]
[FVBCs]
[p_left]
type = FVDirichletBC
variable = pf
boundary = 'left'
value = 1
[]
[p_right]
type = FVDirichletBC
variable = pf
boundary = 'right'
value = 0
[]
[c_left]
type = FVDirichletBC
variable = c
boundary = 'left'
value = 1
[]
[c_right]
type = FVDirichletBC
variable = c
boundary = 'right'
value = 0
[]
[]
[Materials]
[fluid_flow_mat]
type = BVSinglePhaseFlowMaterial
[]
[permeability]
type = BVConstantPermeability
permeability = 1.0
[]
[porosity]
type = BVConstantPorosity
porosity = 1.0
[]
[solute_mat]
type = BVSinglePhaseFlowSoluteMaterial
[]
[dispersion]
type = BVConstantDispersion
dispersion = 1.0e-03
[]
[fluid_properties]
type = BVFluidProperties
fluid_pressure = pf
temperature = 273
fp = simple_fluid
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 1.0
[]
[]
[VectorPostprocessors]
[line_c]
type= LineValueSampler
num_points = 400
start_point = '0 0 0'
end_point = '1 0 0'
sort_by = x
variable = c
execute_on = 'TIMESTEP_END'
outputs = csv
[]
[]
[Preconditioning]
[hypre]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-snes_linesearch_type -pc_type -pc_hypre_type'
petsc_options_value = 'bt hypre boomeramg'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
# scheme = 'BDF2'
automatic_scaling = true
residual_and_jacobian_together = true
start_time = 0
end_time = 0.6
num_steps = 600
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
file_base = 'outputs/advection-diffusion'
exodus = true
[csv]
type = CSV
sync_only = true
sync_times = '0.2 0.4 0.6'
[]
[]
(test/tests/fluid_flow/fv_single_phase_1D_transient.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 50
ny = 1
nz = 1
xmin = -50
xmax = 50
ymin = 0
ymax = 5
zmin = 0
zmax = 5
[]
[Variables]
[pf]
type = MooseVariableFVReal
[]
[]
[FVKernels]
[fluid_time_derivative]
type = BVFVSinglePhaseTimeDerivative
variable = pf
[]
[darcy]
type = BVFVSinglePhaseDarcy
variable = pf
[]
[]
[Functions]
[pf_func]
type = ParsedFunction
expression = 'p1*t'
symbol_names = 'p1'
symbol_values = '23.14814815'
[]
[]
[AuxVariables]
[vf_x]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[vf_x_aux]
type = BVDarcyVelocityAux
variable = vf_x
fluid_pressure = pf
component = x
execute_on = 'TIMESTEP_END'
[]
[]
[FVBCs]
[p_left]
type = FVFunctionDirichletBC
variable = pf
boundary = left
function = pf_func
[]
[p_right]
type = FVFunctionDirichletBC
variable = pf
boundary = right
function = pf_func
[]
[]
[Materials]
[fluid_flow_mat]
type = BVSinglePhaseFlowMaterial
[]
[permeability]
type = BVConstantPermeability
permeability = 1.0e-14
[]
[porosity]
type = BVConstantPorosity
porosity = 1.0
[]
[fluid_properties]
type = BVFluidProperties
fluid_pressure = pf
temperature = 273
fp = simple_fluid
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 1.728e-03
bulk_modulus = 4.0e+09
[]
[]
[Preconditioning]
[asm]
type = SMP
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_type -ksp_rtol -ksp_max_it
-pc_type
-sub_pc_type
-snes_type -snes_atol -snes_rtol -snes_max_it -snes_linesearch_type
-ksp_gmres_restart'
petsc_options_value = 'fgmres 1e-10 100
asm
ilu
newtonls 1e-12 1e-08 100 basic
201'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
automatic_scaling = true
residual_and_jacobian_together = true
start_time = 0.0
end_time = 43200
num_steps = 10
[]
[Outputs]
interval = 5
exodus = true
[]
(examples/poroelasticity/terzaghi/terzaghi.i)
# Terzaghi's problem of consolodation of a soil layer
#
# See Arnold Verruijt "Theory and Problems of Poroelasticity" 2015
# Section 2.2 Terzaghi's problem
#
# Time dimension is t = Cv * t / h^2
# Space dimension is z = z / h
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 100
nz = 5
xmin = -0.05
xmax = 0.05
ymin = 0
ymax = 1
zmin = -0.05
zmax = 0.05
[]
[Variables]
[pf]
order = FIRST
family = LAGRANGE
[]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[disp_z]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[fluid_time_derivative]
type = BVSinglePhaseTimeDerivative
variable = pf
[]
[darcy]
type = BVSinglePhaseDarcy
variable = pf
[]
[stress_x]
type = BVStressDivergence
component = x
variable = disp_x
fluid_pressure = pf
[]
[stress_y]
type = BVStressDivergence
component = y
variable = disp_y
fluid_pressure = pf
[]
[stress_z]
type = BVStressDivergence
component = z
variable = disp_z
fluid_pressure = pf
[]
[]
[BCs]
[confine_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confine_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'front back'
[]
[base_fixed]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[]
[top_load]
type = NeumannBC
variable = disp_y
value = -1
boundary = 'top'
[]
[topdrained]
type = DirichletBC
variable = pf
value = 0
boundary = 'top'
[]
[]
[Materials]
[mechanical]
type = BVMechanicalMaterial
displacements = 'disp_x disp_y disp_z'
bulk_modulus = 4
shear_modulus = 3
[]
[fluid_flow_mat]
type = BVSinglePhaseFlowMaterial
[]
[single_phase_poromech]
type = BVPoroMechanicsMaterial
biot_coefficient = 0.6
[]
[permeability]
type = BVConstantPermeability
permeability = 1.5e-02 # scaled by effective space
[]
[porosity]
type = BVConstantPorosity
porosity = 0.1
[]
[fluid]
type = BVFluidProperties
fluid_pressure = pf
temperature = 273
fp = simple_fluid
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 0.13953488372093023 # scaled by effective time
bulk_modulus = 8.0
[]
[]
[Preconditioning]
[precond]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_linesearch_type'
petsc_options_value = 'fgmres ilu 1e-08 1e-10 100 basic'
[]
[]
[Postprocessors]
[U]
type = PointValue
outputs = 'csv_u'
point = '0 1 0'
variable = disp_y
[]
[]
[VectorPostprocessors]
[line_pf]
type = LineValueSampler
variable = pf
start_point = '0.0 0.0 0.0'
end_point = '0.0 1.0 0.0'
num_points = 100
sort_by = 'y'
outputs = 'csv_p'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
automatic_scaling = true
start_time = 0
end_time = 10
[TimeStepper]
type = LogConstantDT
first_dt = 0.0001
log_dt = 0.022
[]
[]
[Outputs]
perf_graph = true
execute_on = 'TIMESTEP_END'
print_linear_residuals = false
exodus = true
[csv_p]
type = CSV
sync_only = true
sync_times = '0.001 0.005 0.01 0.05 0.1 0.2 0.5 1.0'
[]
[csv_u]
type = CSV
[]
[]
(examples/poroelasticity/mandel/mandel_fv.i)
# Mandel's problem
#
# See Arnold Verruijt "Theory and Problems of Poroelasticity" 2015
# Section 3.2 Mandel's problem
# Cheng and Detournay (1988), A direct boundary element method for plane strain poroelasticity
#
# Time dimension is t = Cv * t / a^2
# Space dimension is x = x / a
[Mesh]
type = GeneratedMesh
dim = 3
nx = 20
ny = 20
nz = 20
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 1.0
[]
[Variables]
[pf]
type = MooseVariableFVReal
[]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[disp_z]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[stress_x]
type = BVStressDivergence
component = x
variable = disp_x
fluid_pressure = pf
[]
[stress_y]
type = BVStressDivergence
component = y
variable = disp_y
fluid_pressure = pf
[]
[stress_z]
type = BVStressDivergence
component = z
variable = disp_z
fluid_pressure = pf
[]
[]
[FVKernels]
[fluid_time_derivative]
type = BVFVSinglePhaseTimeDerivative
variable = pf
[]
[darcy]
type = BVFVSinglePhaseDarcy
variable = pf
[]
[]
[BCs]
[confine_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[]
[base_fixed]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[]
[top_load]
type = NeumannBC
variable = disp_y
value = -1
boundary = 'top'
[]
[confine_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'front back'
[]
[]
[FVBCs]
[sides_drained]
type = FVDirichletBC
variable = pf
value = 0
boundary = 'right'
[]
[]
[Materials]
[mechanical]
type = BVMechanicalMaterial
displacements = 'disp_x disp_y disp_z'
bulk_modulus = 1
poisson_ratio = 0.25
[]
[fluid_flow_mat]
type = BVSinglePhaseFlowMaterial
[]
[single_phase_poromech]
type = BVPoroMechanicsMaterial
biot_coefficient = 0.6
[]
[permeability]
type = BVConstantPermeability
permeability = 1.5 # scaled by effective space
[]
[porosity]
type = BVConstantPorosity
porosity = 0.1
[]
[fluid]
type = BVFluidProperties
fluid_pressure = pf
temperature = 273
fp = simple_fluid
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 3.636363636363636 # scaled by effective time
bulk_modulus = 8.0
[]
[]
[Preconditioning]
[asm]
type = SMP
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_type
-pc_type
-sub_pc_type
-snes_type -snes_atol -snes_rtol -snes_max_it -snes_linesearch_type
-ksp_gmres_restart'
petsc_options_value = 'fgmres
asm
ilu
newtonls 1e-08 1e-10 120 basic
201'
[]
[]
[Postprocessors]
[U]
type = SideAverageValue
boundary = top
outputs = 'csv_t'
variable = disp_y
[]
[P1]
type = PointValue
outputs = 'csv_t'
point = '0.0 0.0 0.0'
variable = pf
[]
[P2]
type = PointValue
outputs = 'csv_t'
point = '0.25 0.0 0.0'
variable = pf
[]
[P3]
type = PointValue
outputs = 'csv_t'
point = '0.5 0.0 0.0'
variable = pf
[]
[P4]
type = PointValue
outputs = 'csv_t'
point = '0.75 0.0 0.0'
variable = pf
[]
[]
[VectorPostprocessors]
[line_pf]
type = LineValueSampler
variable = pf
start_point = '0.0 0.0 0.0'
end_point = '1.0 0.0 0.0'
num_points = 20
sort_by = 'x'
outputs = 'csv_p'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
automatic_scaling = true
start_time = 0
end_time = 10
[TimeStepper]
type = LogConstantDT
first_dt = 0.001
log_dt = 0.022
[]
[]
[Outputs]
perf_graph = true
execute_on = 'TIMESTEP_END'
print_linear_residuals = false
exodus = true
[csv_p]
type = CSV
sync_only = true
sync_times = '0.01 0.1 0.5 1.0 2.0'
[]
[csv_t]
type = CSV
[]
[]
(test/tests/poroelasticity/terzaghi.i)
# Terzaghi's problem of consolodation of a soil layer
#
# See Arnold Verruijt "Theory and Problems of Poroelasticity" 2015
# Section 2.2 Terzaghi's problem
#
# Time dimension is t = Cv * t / h^2
# Space dimension is z = z / h
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 10
xmin = -1.0
xmax = 1.0
ymin = 0
ymax = 1
[]
[Variables]
[pf]
order = FIRST
family = LAGRANGE
[]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[fluid_time_derivative]
type = BVSinglePhaseTimeDerivative
variable = pf
[]
[darcy]
type = BVSinglePhaseDarcy
variable = pf
[]
[stress_x]
type = BVStressDivergence
component = x
variable = disp_x
fluid_pressure = pf
[]
[stress_y]
type = BVStressDivergence
component = y
variable = disp_y
fluid_pressure = pf
[]
[]
[BCs]
[confine_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[base_fixed]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[]
[top_load]
type = NeumannBC
variable = disp_y
value = -1
boundary = 'top'
[]
[topdrained]
type = DirichletBC
variable = pf
value = 0
boundary = 'top'
[]
[]
[Materials]
[mechanical]
type = BVMechanicalMaterial
displacements = 'disp_x disp_y'
bulk_modulus = 4
shear_modulus = 3
[]
[fluid_flow_mat]
type = BVSinglePhaseFlowMaterial
[]
[single_phase_poromech]
type = BVPoroMechanicsMaterial
biot_coefficient = 0.6
[]
[permeability]
type = BVConstantPermeability
permeability = 1.5e-02 # scaled by effective space
[]
[porosity]
type = BVConstantPorosity
porosity = 0.1
[]
[fluid]
type = BVFluidProperties
fluid_pressure = pf
temperature = 273
fp = simple_fluid
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 0.13953488372093023 # scaled by effective time
bulk_modulus = 8.0
[]
[]
[Preconditioning]
[precond]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_linesearch_type'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 100 basic'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
automatic_scaling = true
start_time = 0
end_time = 0.01
[TimeStepper]
type = LogConstantDT
first_dt = 0.0001
log_dt = 0.044
[]
[]
[Outputs]
perf_graph = true
execute_on = 'TIMESTEP_END'
print_linear_residuals = false
exodus = true
[]
(examples/poroelasticity/terzaghi/terzaghi_fv.i)
# Terzaghi's problem of consolodation of a soil layer
#
# See Arnold Verruijt "Theory and Problems of Poroelasticity" 2015
# Section 2.2 Terzaghi's problem
#
# Time dimension is t = Cv * t / h^2
# Space dimension is z = z / h
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 100
nz = 5
xmin = -0.05
xmax = 0.05
ymin = 0
ymax = 1
zmin = -0.05
zmax = 0.05
[]
[Variables]
[pf]
type = MooseVariableFVReal
[]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[disp_z]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[stress_x]
type = BVStressDivergence
component = x
variable = disp_x
fluid_pressure = pf
[]
[stress_y]
type = BVStressDivergence
component = y
variable = disp_y
fluid_pressure = pf
[]
[stress_z]
type = BVStressDivergence
component = z
variable = disp_z
fluid_pressure = pf
[]
[]
[FVKernels]
[fluid_time_derivative]
type = BVFVSinglePhaseTimeDerivative
variable = pf
[]
[darcy]
type = BVFVSinglePhaseDarcy
variable = pf
[]
[]
[BCs]
[confine_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confine_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'front back'
[]
[base_fixed]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[]
[top_load]
type = NeumannBC
variable = disp_y
value = -1
boundary = 'top'
[]
[]
[FVBCs]
[topdrained]
type = FVDirichletBC
variable = pf
value = 0
boundary = 'top'
[]
[]
[Materials]
[mechanical]
type = BVMechanicalMaterial
displacements = 'disp_x disp_y disp_z'
bulk_modulus = 4
shear_modulus = 3
[]
[fluid_flow_mat]
type = BVSinglePhaseFlowMaterial
[]
[single_phase_poromech]
type = BVPoroMechanicsMaterial
biot_coefficient = 0.6
[]
[permeability]
type = BVConstantPermeability
permeability = 1.5e-02 # scaled by effective space
[]
[porosity]
type = BVConstantPorosity
porosity = 0.1
[]
[fluid]
type = BVFluidProperties
fluid_pressure = pf
temperature = 273
fp = simple_fluid
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 0.13953488372093023 # scaled by effective time
bulk_modulus = 8.0
[]
[]
[Preconditioning]
[precond]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_linesearch_type'
petsc_options_value = 'bcgs bjacobi 1e-08 1e-10 100 basic'
[]
[]
[Postprocessors]
[U]
type = PointValue
outputs = 'csv_u'
point = '0 1 0'
variable = disp_y
[]
[]
[VectorPostprocessors]
[line_pf]
type = LineValueSampler
variable = pf
start_point = '0.0 0.0 0.0'
end_point = '0.0 1.0 0.0'
num_points = 100
sort_by = 'y'
outputs = 'csv_p'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
automatic_scaling = true
start_time = 0
end_time = 10
[TimeStepper]
type = LogConstantDT
first_dt = 0.0001
log_dt = 0.022
[]
[]
[Outputs]
perf_graph = true
execute_on = 'TIMESTEP_END'
print_linear_residuals = false
exodus = true
[csv_p]
type = CSV
sync_only = true
sync_times = '0.001 0.005 0.01 0.05 0.1 0.2 0.5 1.0'
[]
[csv_u]
type = CSV
[]
[]
(examples/multiphase/buckley-leverett/buckley-leverett.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0
xmax = 1
nx = 200
ymin = -0.01
ymax = 0.01
zmin = -0.01
zmax = 0.01
ny = 1
nz = 1
[]
[Variables]
[p]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[sw]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = 0.01
[]
# [sn]
# order = CONSTANT
# family = MONOMIAL
# fv = true
# initial_condition = 0.99
# []
[]
[FVKernels]
# Total pressure
[darcy_p]
# type = FVDiffusion
type = BVFVMultiPhasePressureDarcy
variable = p
# coeff = 1
[]
# Wetting phase
[time_w]
type = BVFVMultiPhaseSaturationTimeDerivative
variable = sw
phase = 'wetting'
[]
[darcy_w]
type = BVFVMultiPhaseSaturationDarcy
variable = sw
total_pressure = p
phase = 'wetting'
[]
# # Non-wetting phase
# [time_nw]
# type = BVFVMultiPhaseSaturationTimeDerivative
# variable = sn
# phase = 'non_wetting'
# []
# [darcy_nw]
# type = BVFVMultiPhaseSaturationDarcy
# variable = sn
# total_pressure = p
# phase = 'non_wetting'
# []
[]
[AuxVariables]
[u]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[u_aux]
type = BVDarcyVelocityAux
variable = u
fluid_pressure = p
component = x
execute_on = 'TIMESTEP_END'
[]
[]
[FVBCs]
[leftinflux_pw]
type = FVNeumannBC
variable = p
value = 1.0
boundary = 'left'
[]
[rightoutflux_pw]
type = FVDirichletBC
variable = p
value = 0.0
boundary = 'right'
[]
[leftinflux_sw]
# type = FVDirichletBC
type = FVNeumannBC
variable = sw
# value = 0.99
value = 1.0
boundary = 'left'
[]
# [right_sw]
# # type = FVDirichletBC
# type = FVNeumannBC
# variable = sw
# # value = 0.01
# value = -1
# boundary = 'right'
# []
# [leftinflux_sn]
# type = FVDirichletBC
# variable = sn
# value = 0.05
# boundary = 'left'
# []
# [right_sn]
# type = FVDirichletBC
# variable = sn
# value = 0.95
# boundary = 'right'
# []
[]
[Materials]
[fluid_flow_mat]
type = BVMultiPhaseFlowMaterial
output_properties = 'fluid_mobility fractional_flow_w diffusivity_saturation'
outputs = exodus
[]
[porosity]
type = BVConstantPorosity
porosity = 1.0
[]
[permeability]
type = BVConstantPermeability
permeability = 1.0
[]
[fluid_properties_w]
type = BVFluidProperties
fluid_pressure = p
temperature = 273
fp = simple_fluid_w
phase = 'wetting'
[]
[fluid_properties_nw]
type = BVFluidProperties
fluid_pressure = p
temperature = 273
fp = simple_fluid_nw
phase = 'non_wetting'
[]
[capillary_pressure]
type = BVCapillaryPressurePowerLaw
saturation_w = sw
exponent = 2
reference_capillary_pressure = 0.0
output_properties = 'capillary_pressure'
outputs = exodus
[]
[rel_perm]
type = BVRelativePermeabilityPowerLaw
saturation_w = sw
exponent = 2
output_properties = 'relative_permeability_w relative_permeability_n'
outputs = exodus
[]
[]
[FluidProperties]
[simple_fluid_w]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 1.0
[]
[simple_fluid_nw]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 1.0
[]
[]
[VectorPostprocessors]
[line_sw]
type = LineValueSampler
variable = sw
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 200
sort_by = 'x'
outputs = 'csv'
[]
[]
# [Preconditioning]
# [hypre]
# type = SMP
# full = true
# petsc_options = '-snes_ksp_ew -snes_converged_reason -ksp_converged_reason'
# petsc_options_iname = '-pc_type -pc_hypre_type
# -snes_atol -snes_max_it -snes_linesearch_type'
# petsc_options_value = 'hypre boomeramg
# 1.0e-10 1000 basic'
# []
# []
[Preconditioning]
active = 'superlu'
[hypre]
type = SMP
full = true
petsc_options = '-snes_ksp_ew -snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_hypre_type
-pc_hypre_boomeramg_strong_threshold -pc_hypre_boomeramg_agg_nl -pc_hypre_boomeramg_agg_num_paths -pc_hypre_boomeramg_max_levels
-pc_hypre_boomeramg_coarsen_type -pc_hypre_boomeramg_interp_type
-pc_hypre_boomeramg_P_max -pc_hypre_boomeramg_truncfacto -snes_atol'
petsc_options_value = 'hypre boomeramg
0.7 4 5 25
HMIS ext+i
2 0.3 1.0e-14'
[]
[superlu]
type = SMP
full = true
petsc_options = '-snes_ksp_ew -snes_converged_reason -ksp_converged_reason'# -ksp_gmres_modifiedgramschmidt -ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-snes_type
-snes_atol -snes_rtol -snes_max_it
-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'newtonls
1e-10 1e-08 50
lu superlu_dist'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
scheme = 'bdf2'
start_time = 0
end_time = 1.0
num_steps = 100
timestep_tolerance = 1.0e-05
automatic_scaling = true
residual_and_jacobian_together = true
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
execute_on = 'INITIAL TIMESTEP_END'
exodus = true
[csv]
type = CSV
sync_only = true
sync_times = '0.25 0.5 0.75'
[]
[]
(examples/poroelasticity/mandel/mandel.i)
# Mandel's problem
#
# See Arnold Verruijt "Theory and Problems of Poroelasticity" 2015
# Section 3.2 Mandel's problem
# Cheng and Detournay (1988), A direct boundary element method for plane strain poroelasticity
#
# Time dimension is t = Cv * t / a^2
# Space dimension is x = x / a
[Mesh]
type = GeneratedMesh
dim = 3
nx = 20
ny = 20
nz = 20
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 1.0
[]
[Variables]
[pf]
order = FIRST
family = LAGRANGE
[]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[disp_z]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[fluid_time_derivative]
type = BVSinglePhaseTimeDerivative
variable = pf
[]
[darcy]
type = BVSinglePhaseDarcy
variable = pf
[]
[stress_x]
type = BVStressDivergence
component = x
variable = disp_x
fluid_pressure = pf
[]
[stress_y]
type = BVStressDivergence
component = y
variable = disp_y
fluid_pressure = pf
[]
[stress_z]
type = BVStressDivergence
component = z
variable = disp_z
fluid_pressure = pf
[]
[]
[BCs]
[confine_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[]
[base_fixed]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[]
[top_load]
type = NeumannBC
variable = disp_y
value = -1
boundary = 'top'
[]
[confine_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'front back'
[]
[sides_drained]
type = DirichletBC
variable = pf
value = 0
boundary = 'right'
[]
[]
[Materials]
[mechanical]
type = BVMechanicalMaterial
displacements = 'disp_x disp_y disp_z'
bulk_modulus = 1
poisson_ratio = 0.25
[]
[fluid_flow_mat]
type = BVSinglePhaseFlowMaterial
[]
[single_phase_poromech]
type = BVPoroMechanicsMaterial
biot_coefficient = 0.6
[]
[permeability]
type = BVConstantPermeability
permeability = 1.5 # scaled by effective space
[]
[porosity]
type = BVConstantPorosity
porosity = 0.1
[]
[fluid]
type = BVFluidProperties
fluid_pressure = pf
temperature = 273
fp = simple_fluid
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 3.636363636363636 # scaled by effective time
bulk_modulus = 8.0
[]
[]
[Preconditioning]
[asm]
type = SMP
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_type
-pc_type
-sub_pc_type
-snes_type -snes_atol -snes_rtol -snes_max_it -snes_linesearch_type
-ksp_gmres_restart'
petsc_options_value = 'fgmres
asm
ilu
newtonls 1e-08 1e-10 120 bt
201'
[]
[]
[Postprocessors]
[U]
type = SideAverageValue
boundary = top
outputs = 'csv_t'
variable = disp_y
[]
[P1]
type = PointValue
outputs = 'csv_t'
point = '0.0 0.0 0.0'
variable = pf
[]
[P2]
type = PointValue
outputs = 'csv_t'
point = '0.25 0.0 0.0'
variable = pf
[]
[P3]
type = PointValue
outputs = 'csv_t'
point = '0.5 0.0 0.0'
variable = pf
[]
[P4]
type = PointValue
outputs = 'csv_t'
point = '0.75 0.0 0.0'
variable = pf
[]
[]
[VectorPostprocessors]
[line_pf]
type = LineValueSampler
variable = pf
start_point = '0.0 0.0 0.0'
end_point = '1.0 0.0 0.0'
num_points = 20
sort_by = 'x'
outputs = 'csv_p'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
automatic_scaling = true
start_time = 0
end_time = 10
[TimeStepper]
type = LogConstantDT
first_dt = 0.001
log_dt = 0.022
[]
[]
[Outputs]
perf_graph = true
execute_on = 'TIMESTEP_END'
print_linear_residuals = false
exodus = true
[csv_p]
type = CSV
sync_only = true
sync_times = '0.01 0.1 0.5 1.0 2.0'
[]
[csv_t]
type = CSV
[]
[]
(test/tests/fluid_flow/single_phase_1D_transient.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 200
ny = 1
nz = 1
xmin = -50
xmax = 50
ymin = 0
ymax = 5
zmin = 0
zmax = 5
[]
[Variables]
[pf]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[fluid_time_derivative]
type = BVSinglePhaseTimeDerivative
variable = pf
[]
[darcy]
type = BVSinglePhaseDarcy
variable = pf
[]
[]
[Functions]
[pf_func]
type = ParsedFunction
expression = 'p1*t'
symbol_names = 'p1'
symbol_values = '23.14814815'
[]
[]
[AuxVariables]
[vf_x]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[vf_x_aux]
type = BVDarcyVelocityAux
variable = vf_x
fluid_pressure = pf
component = x
execute_on = 'TIMESTEP_END'
[]
[]
[BCs]
[p_left]
type = FunctionDirichletBC
variable = pf
boundary = left
function = pf_func
[]
[p_right]
type = FunctionDirichletBC
variable = pf
boundary = right
function = pf_func
[]
[]
[Materials]
[fluid_flow_mat]
type = BVSinglePhaseFlowMaterial
[]
[permeability]
type = BVConstantPermeability
permeability = 1.0e-14
[]
[porosity]
type = BVConstantPorosity
porosity = 1.0
[]
[fluid_properties]
type = BVFluidProperties
fluid_pressure = pf
temperature = 273
fp = simple_fluid
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 1.728e-03
bulk_modulus = 4.0e+09
[]
[]
[Preconditioning]
[hypre]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
automatic_scaling = true
start_time = 0.0
end_time = 43200
num_steps = 10
[]
[Outputs]
interval = 5
exodus = true
[]
(examples/multiphase/Mose/Mose.i)
[Mesh]
[mesh_gen]
type = GeneratedMeshGenerator
dim = 2
xmin = -50
xmax = 50
ymin = -50
ymax = 50
nx = 50
ny = 50
[]
[barrier1]
type = SubdomainBoundingBoxGenerator
input = 'mesh_gen'
block_id = 1
bottom_left = '-50 6 0'
top_right = '30 10 0'
[]
[barrier2]
type = SubdomainBoundingBoxGenerator
input = 'barrier1'
block_id = 1
bottom_left = '-30 -10 0'
top_right = '50 -6 0'
[]
[]
[Variables]
[p]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[sw]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = 0.01
[]
[sn]
order = CONSTANT
family = MONOMIAL
fv = true
initial_condition = 0.99
[]
[]
[FVKernels]
# Total pressure
[darcy_p]
type = BVFVMultiPhasePressureDarcy
variable = p
[]
# Wetting phase
[time_w]
type = BVFVMultiPhaseSaturationTimeDerivative
variable = sw
phase = 'wetting'
[]
[darcy_w]
type = BVFVMultiPhaseSaturationDarcy
variable = sw
total_pressure = p
phase = 'wetting'
[]
# Non-wetting phase
[time_nw]
type = BVFVMultiPhaseSaturationTimeDerivative
variable = sn
phase = 'non_wetting'
[]
[darcy_nw]
type = BVFVMultiPhaseSaturationDarcy
variable = sn
total_pressure = p
phase = 'non_wetting'
[]
[]
[FVBCs]
[topinflux]
type = FVDirichletBC
variable = p
value = 100
boundary = 'top'
[]
[bottondrained]
type = FVDirichletBC
variable = p
value = 0
boundary = 'bottom'
[]
[topinflux_sw]
type = FVDirichletBC
variable = sw
value = 1.0
boundary = 'top'
[]
[bottom_sw]
type = FVDirichletBC
variable = sw
value = 0.01
boundary = 'bottom'
[]
[topinflux_sn]
type = FVDirichletBC
variable = sn
value = 0.0
boundary = 'top'
[]
[bottom_sn]
type = FVDirichletBC
variable = sn
value = 0.99
boundary = 'bottom'
[]
[]
[Materials]
[fluid_flow_mat]
type = BVMultiPhaseFlowMaterial
[]
[porosity]
type = BVConstantPorosity
porosity = 1.0
[]
[permeability0]
type = BVConstantPermeability
block = 0
permeability = 1.0
[]
[permeability1]
type = BVConstantPermeability
block = 1
permeability = 1.0e-05
[]
[fluid_properties_w]
type = BVFluidProperties
fluid_pressure = p
temperature = 273
fp = simple_fluid_w
phase = 'wetting'
[]
[fluid_properties_nw]
type = BVFluidProperties
fluid_pressure = p
temperature = 273
fp = simple_fluid_nw
phase = 'non_wetting'
[]
[rel_perm]
type = BVRelativePermeabilityPowerLaw
saturation_w = sw
exponent = 2.0
[]
[capillary_pressure]
type = BVCapillaryPressurePowerLaw
saturation_w = sw
exponent = 2.0
reference_capillary_pressure = 1.0e-04
[]
[]
[FluidProperties]
[simple_fluid_w]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 0.5
[]
[simple_fluid_nw]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 1.0
[]
[]
[Preconditioning]
active = 'superlu'
[hypre]
type = SMP
full = true
petsc_options = '-snes_ksp_ew -snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_hypre_type
-pc_hypre_boomeramg_strong_threshold -pc_hypre_boomeramg_agg_nl -pc_hypre_boomeramg_agg_num_paths -pc_hypre_boomeramg_max_levels
-pc_hypre_boomeramg_coarsen_type -pc_hypre_boomeramg_interp_type
-pc_hypre_boomeramg_P_max -pc_hypre_boomeramg_truncfacto -snes_atol'
petsc_options_value = 'hypre boomeramg
0.7 4 5 25
HMIS ext+i
2 0.3 1.0e-14'
[]
[superlu]
type = SMP
full = true
petsc_options = '-snes_ksp_ew -snes_converged_reason -ksp_converged_reason'# -ksp_gmres_modifiedgramschmidt -ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-snes_type
-snes_atol -snes_rtol -snes_max_it
-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'newtonls
1e-10 1e-08 50
lu superlu_dist'
[]
[]
# [Preconditioning]
# [hypre]
# type = SMP
# full = true
# petsc_options = '-snes_ksp_ew -snes_converged_reason -ksp_converged_reason'
# petsc_options_iname = '-pc_type -pc_hypre_type
# -snes_atol -snes_max_it -snes_linesearch_type'
# petsc_options_value = 'hypre boomeramg
# 1.0e-10 1000 basic'
# []
# []
[Executioner]
type = Transient
solve_type = 'NEWTON'
start_time = 0
end_time = 500
num_steps = 500
timestep_tolerance = 1.0e-05
automatic_scaling = true
residual_and_jacobian_together = true
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
execute_on = 'INITIAL TIMESTEP_END'
exodus = true
[]
(examples/poroelasticity/cryer/cryer.i)
# Cryer's problem
#
# See Arnold Verruijt "Theory and Problems of Poroelasticity" 2015
# Section 3.3 Cryer's problem
#
# Time dimension is t = Cv * t / a^2
# Space dimension is x = x / a
[Mesh]
type = FileMesh
file = 'mesh.msh'
[]
[Variables]
[pf]
order = FIRST
family = LAGRANGE
[]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[disp_z]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[fluid_time_derivative]
type = BVSinglePhaseTimeDerivative
variable = pf
[]
[darcy]
type = BVSinglePhaseDarcy
variable = pf
[]
[stress_x]
type = BVStressDivergence
component = x
variable = disp_x
fluid_pressure = pf
[]
[stress_y]
type = BVStressDivergence
component = y
variable = disp_y
fluid_pressure = pf
[]
[stress_z]
type = BVStressDivergence
component = z
variable = disp_z
fluid_pressure = pf
[]
[]
[BCs]
[confine_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[]
[confine_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'back'
[]
[confine_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'bottom'
[]
[BVPressure]
[out_pressure]
boundary = 'out'
displacement_vars = 'disp_x disp_y disp_z'
value = 1.0
[]
[]
[out_drained]
type = DirichletBC
variable = pf
value = 0
boundary = 'out'
[]
[]
[Materials]
[mechanical]
type = BVMechanicalMaterial
displacements = 'disp_x disp_y disp_z'
bulk_modulus = 1
poisson_ratio = 0.25
[]
[fluid_flow_mat]
type = BVSinglePhaseFlowMaterial
[]
[single_phase_poromech]
type = BVPoroMechanicsMaterial
biot_coefficient = 0.6
[]
[permeability]
type = BVConstantPermeability
permeability = 1.5 # scaled by effective space
[]
[porosity]
type = BVConstantPorosity
porosity = 0.1
[]
[fluid]
type = BVFluidProperties
fluid_pressure = pf
temperature = 273
fp = simple_fluid
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
density0 = 1.0
viscosity = 3.636363636363636 # scaled by effective time
bulk_modulus = 8.0
[]
[]
[Preconditioning]
[asm]
type = SMP
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_type
-pc_type
-sub_pc_type
-snes_type -snes_atol -snes_rtol -snes_max_it -snes_linesearch_type
-ksp_gmres_restart'
petsc_options_value = 'fgmres
asm
ilu
newtonls 1e-08 1e-10 200 basic
201'
[]
[]
[Postprocessors]
[Pc]
type = PointValue
outputs = 'csv_t'
point = '0.0 0.0 0.0'
variable = pf
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
automatic_scaling = true
start_time = 0
end_time = 10
[TimeStepper]
type = LogConstantDT
first_dt = 0.0001
log_dt = 0.022
[]
[]
[Outputs]
perf_graph = true
execute_on = 'TIMESTEP_END'
print_linear_residuals = false
exodus = true
[csv_t]
type = CSV
[]
[]