Water97FluidProperties

Fluid properties for water and steam (H2O) using IAPWS-IF97

The water implementation in Fluid Properties is the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. This formulation calculates properties of water and steam using pressure and temperature as inputs. The IAPWS-IF97 formulation is split into five different regions in the phase diagram.

All five regions are implemented in the Fluid Properties module. To avoid iteration in region 3 of the IAPWS-IF97 formulation, the backwards equations from IAPWS (2014) are implemented.

Viscosity is calculated using the IAPWS 2008 formulation (IAPWS, 2008). Note that the critical enhancement has not been implemented.

Thermal conductivity is calculated using the IAPS 1985 formulation (IAPS, 1985). Although there is a newer formulation available (IAPWS, 2011), it is significantly more complicated, so has not been implemented yet.

Dissolution of a dilute gas into water is calculated using Henry's law (IAPWS, 2004).

Properties of water

Propertyvalue
Molar mass0.018015 kg/mol
Critical temperature647.096 K
Critical pressure22.064 MPa
Critical density322.0 kg/m
Triple point temperature273.16 K
Triple point pressure611.657 Pa

Range of validity

The Water97FluidProperties UserObject is valid for:

  • 273.15 K T 1073.15 K for p 100 MPa

  • 1073.15 K T 2273.15 K for p 50 MPa

Input Parameters

  • execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM.

    Default:TIMESTEP_END

    C++ Type:ExecFlagEnum

    Options:NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM.

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Optional Parameters

  • T_initial_guess400Temperature initial guess for Newton Method variable set conversion

    Default:400

    C++ Type:double

    Controllable:No

    Description:Temperature initial guess for Newton Method variable set conversion

  • p_initial_guess200000Pressure initial guess for Newton Method variable set conversion

    Default:200000

    C++ Type:double

    Controllable:No

    Description:Pressure initial guess for Newton Method variable set conversion

  • tolerance1e-08Tolerance for 2D Newton variable set conversion

    Default:1e-08

    C++ Type:double

    Controllable:No

    Description:Tolerance for 2D Newton variable set conversion

Variable Set Conversions Newton Solve Parameters

  • allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

    Default:False

    C++ Type:bool

    Controllable:No

    Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

  • allow_imperfect_jacobiansFalsetrue to allow unimplemented property derivative terms to be set to zero for the AD API

    Default:False

    C++ Type:bool

    Controllable:No

    Description:true to allow unimplemented property derivative terms to be set to zero for the AD API

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

    Default:0

    C++ Type:int

    Controllable:No

    Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

  • force_postauxFalseForces the UserObject to be executed in POSTAUX

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in POSTAUX

  • force_preauxFalseForces the UserObject to be executed in PREAUX

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in PREAUX

  • force_preicFalseForces the UserObject to be executed in PREIC during initial setup

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in PREIC during initial setup

  • fp_typesingle-phase-fpType of the fluid property object

    Default:single-phase-fp

    C++ Type:FPType

    Controllable:No

    Description:Type of the fluid property object

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

References

  1. IAPS. Revised Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance. Technical Report, IAPWS, 1985.[BibTeX]
  2. IAPWS. Guidelines on the Henry's constant and vapour liquid distribution constant for gases in H$_2$O and D$_2$O at high temperatures. Technical Report, IAPWS, 2004.[BibTeX]
  3. IAPWS. Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance. Technical Report, IAPWS, 2008. URL: www.iapws.org/relguide/visc.pdf.[BibTeX]
  4. IAPWS. Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance. Technical Report, IAPWS, 2011. URL: www.iapws.org/relguide/ThCond.pdf.[BibTeX]
  5. IAPWS. Revised Supplementary Release on Backward Equations for Specific Volume as a Function of Pressure and Temperature v(p,T) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. Technical Report, IAPWS, 2014. URL: www.iapws.org/relguide/Supp-VPT3-2016.pdf.[BibTeX]