StiffenedGasFluidProperties

Fluid properties for a stiffened gas

A simple fluid class that implements a stiffened equation of state (Métayer et al., 2004) where is the ratio of specific heat capacities, is a constant that defines the zero reference state for internal energy, and is a constant representing the attraction between fluid molecules that makes the fluid stiff in comparison to an ideal gas. This equation of state is typically used to represent water that is under very high pressure.

Input Parameters

  • cvConstant volume specific heat

    C++ Type:double

    Controllable:No

    Description:Constant volume specific heat

  • gammaHeat capacity ratio

    C++ Type:double

    Controllable:No

    Description:Heat capacity ratio

  • p_infStiffness parameter

    C++ Type:double

    Controllable:No

    Description:Stiffness parameter

  • qParameter defining zero point of internal energy

    C++ Type:double

    Controllable:No

    Description:Parameter defining zero point of internal energy

Required Parameters

  • M0Molar mass, kg/mol

    Default:0

    C++ Type:double

    Controllable:No

    Description:Molar mass, kg/mol

  • T_c0Critical temperature, K

    Default:0

    C++ Type:double

    Controllable:No

    Description:Critical temperature, K

  • allow_nonphysical_statesTrueAllows for non-physical states, e.g., negative density.

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Allows for non-physical states, e.g., negative density.

  • e_c0Internal energy at the critical point, J/kg

    Default:0

    C++ Type:double

    Controllable:No

    Description:Internal energy at the critical point, J/kg

  • emit_on_nannoneRaise mooseWarning or mooseError?

    Default:none

    C++ Type:MooseEnum

    Options:none, warning, error

    Controllable:No

    Description:Raise mooseWarning or mooseError?

  • execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM.

    Default:TIMESTEP_END

    C++ Type:ExecFlagEnum

    Options:NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM.

  • k0.6Thermal conductivity, W/(m-K)

    Default:0.6

    C++ Type:double

    Controllable:No

    Description:Thermal conductivity, W/(m-K)

  • mu0.001Dynamic viscosity, Pa.s

    Default:0.001

    C++ Type:double

    Controllable:No

    Description:Dynamic viscosity, Pa.s

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • q_prime0Parameter

    Default:0

    C++ Type:double

    Controllable:No

    Description:Parameter

  • rho_c0Critical density, kg/m3

    Default:0

    C++ Type:double

    Controllable:No

    Description:Critical density, kg/m3

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Optional Parameters

  • T_initial_guess400Temperature initial guess for Newton Method variable set conversion

    Default:400

    C++ Type:double

    Controllable:No

    Description:Temperature initial guess for Newton Method variable set conversion

  • p_initial_guess200000Pressure initial guess for Newton Method variable set conversion

    Default:200000

    C++ Type:double

    Controllable:No

    Description:Pressure initial guess for Newton Method variable set conversion

  • tolerance1e-08Tolerance for 2D Newton variable set conversion

    Default:1e-08

    C++ Type:double

    Controllable:No

    Description:Tolerance for 2D Newton variable set conversion

Variable Set Conversions Newton Solve Parameters

  • allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

    Default:False

    C++ Type:bool

    Controllable:No

    Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

  • allow_imperfect_jacobiansFalsetrue to allow unimplemented property derivative terms to be set to zero for the AD API

    Default:False

    C++ Type:bool

    Controllable:No

    Description:true to allow unimplemented property derivative terms to be set to zero for the AD API

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

    Default:0

    C++ Type:int

    Controllable:No

    Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

  • force_postauxFalseForces the UserObject to be executed in POSTAUX

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in POSTAUX

  • force_preauxFalseForces the UserObject to be executed in PREAUX

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in PREAUX

  • force_preicFalseForces the UserObject to be executed in PREIC during initial setup

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in PREIC during initial setup

  • fp_typesingle-phase-fpType of the fluid property object

    Default:single-phase-fp

    C++ Type:FPType

    Controllable:No

    Description:Type of the fluid property object

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

References

  1. O. L. Métayer, J. Massoni, and R. Saurel. Elaborating equations of state of a liquid and its vapor for two-phase flow models. Int. J. Therm. Sci., 43:265–276, 2004.[BibTeX]